INVESTIGATION OF HEAT TRANSFER IN A REGION
OF GRADIENT FLOW WHEN A PLANE TURBULENT
JET IS INCIDENT ON A FLAT PLATE NORMAL TO
THE FLOW
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The boundary conditions are determined experimentally for a system of differential equa-
tions describing heat transfer in a region of gradient flow when a plane turbulent jet is in-
cident on a flat plate normal to the flow. The analytical solution is compared with direct
measurements.

When a plane jet is incident on a flat plate normal to the direction of its velocity, as for an axi-
symmetric jet [1], we can distinguish three flow regions:

1. A region of gradient flow where the pressure falls along the plate from a maximum on the line
where the flow spreads out to nearly atmospheric at a distance x from that line. The velocity at the upper
boundary of the boundary layer, U, increases from zero on the line to a maximum value U, at a distance
X, from it. The y-axis is in the plane of symmetry of the jet normal to the plate and the x-axis is along
the plate normal to the line where the flow spreads out.

In this region we can assume that the flow beyond the limit of the boundary layer is potential and
that it is described by the following equation:
g __1 o M
ox p Ox

2. A region of transitional flow where the velocity U remains practically constant.

3. A region of fundamental flow where the veloeity U begins to decrease due to the braking effect of
the jet at the wall, while the pressure remains practically constant.

In this paper we give the results of investigating only the region of gradient flow. From the practical
point of view this region is of greatest interest. At the same time the physical processes are most complex
here and their investigation is very time-consuming.

Noting that the Reynolds numbers for this region of the flow are small, we can assume that the bound-
ary layer is laminar here, particularly because dP/dx < 0. '

Under these conditions the system of differential equations for the motion, and of continuity and
energy, and the boundary conditions can be written as:

ou dou au 0%u
b U= U= v,
ox T dy dx Y oy* 2
Ou O _ (3)
ax + oy =90
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The boundary conditions are:

fory=0, u=v=0, T =0;

fory =6, u=U; fory =96, T =1.

The velocity at the outer edge of the boundary layer can be written in the form of two terms of 2
series which adequately reflects the actual conditions (Fig. 1)

U=px+B82+..., (5)
where 8, and 8, are constants, depending on h. The equation of continuity is satisfied if
v ¥
== e, U= — -, 6
oy ox 6

We introduce the nondimensional coordinate 7 = y‘/r%L and define the stream function ¥ as follows:

¥ = 1/ ,—;; [Buxfo () + 4B () + .. ], 0

where fj(n) is a function of the nondimensional coordinate 7.

From (6) and (7) we find the velocity distributions for u and v through the thickness of the boundary
layer in the form

w = Buf; (0 * + 4BF 0+ ®

o= l/_[i% {ﬁlfx () + 12Bsfs(m) 22+ .. ']’ @

where the primes indicate differentiation with respect to n. The nondimensional temperature distribution
through the thickness of the boundary layer can be written as [4]

T(x, ) = l—i‘i’-=Fo(n)+-§ix’Fz(n)+---. (10)
) «—Ty B
where Fon), F,@), . . . are functions of the nondimensional coordinate n and of Pr.

Substituting 8) and (9) in (2) and (10) in 4), we obtain, after some transformations, the following
differential equations [4, 7]:

1er

fi—hi=144"
8 fy—3f fs—hfs =1+,
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Fig. 2. The effect of turbulence on the intensification
of heat transfer on the line where the flow spreads
out. a: 1) Nu, as a function of s 2) €M as a percentage
of h [6]; b) Nuy as a function of &).
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with boundary conditions of the form
for 10 flzf;=f3cf;;:01 F0=F2=0; F5=0» fszfézo;

’ r l
for Mmoo fi=1, f3=‘4" Fo=1, F,=0, F,=0, f5’=‘é‘
We solve Egs. (11) with the above boundary conditions numerically [2, 4].

The values of the unknowns fj, fi', fi", fi"' are given in 3], while Fl' is given in [4]. The heat flow at
the wall can be determined from the Fourier —Newton law; equating the absclute values of the right sides,
we obtain :

/ oT
M=—] =oale—T,, {(12)
( dy )y=0 o )
from which, noting (10), we havef
a:AI/%[F;(O)Jr%—F;(O)xZ+...]_- (13)

For Pr = 0.7, the values of the functions are Fy(0) = 0.4959, F;(0) = 0.4476 [4]. Noting these values,
we can wrife (13} as:

Nu, = b, l/—gi (0.496 + 0.448x? % +... ) . (1%

Equation (14) can be used in compufations if we know the constants 8y and 8;. They were determined
experimentally, The experiments were made with pipes of gap length 150 mm and width 5, 11, 20, 31 mm.
The polished flat plate had dimensions 200 x 700 mm; the holes to determine the static pressure were of
diameter 0.3 mm, and the distance between them was 5 mm. The total pressure at the wall boundary layer
was measured by a specially made dynamic head meter. The experiments were made at flow velocities at
the nozzle edge from 5-25 m/ sec.

The experimental results can be put in the form of the following universal equation (Fig. 1):

U 165 o6 (i) (15)

* M X4

TWe retain only the first two terms of the series.
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Here U, and x, depend on the distance between the nozzle edge and the flat plate.
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Fig. 3. Heat-transfer coefficients in the region of
gradient flow: a) Nu; as a function of h [1-4 (continuous
curves) from Egs. (24)-(26); 1) Re, = 22,0005 2) 11,000;
3) 5500; 4) 2750]; dotted curves) from the experimental
data of [5]; b) Nu as a function of x Re, = 11,000); ) h
= 2; II) 5; 1II) 6; IV) 8; V) 16; VI) 32); 1) from Eqgs. (24)-
(26); 2) from [5].

from the measured results we constructed the following equations:

fori =h=6.5

for h = 6.5

_Lit _ 1 T Xx 70,1
Ua ’—iﬂl ] x*—-b:‘—l.’?h ¥
U* 2.3 -—_ X

A T

Comparing (5) and (14), we find that in the range of conditions investigated

p=16Y p—06x.

Xe

To determine them

(16)

(17

(18)

The computational equations for determining the local values of the coefficients of heat transfer o
in the region of gradient flow are found by substituting (18) in (13) and noting (16) and (17), i.e.,

fori=h=65

for h = 6.5

2\ 1
Nu, =0.48 Reg~5( 1—0.116—’5-) =

v AN 1
Nu, = 1.25 Re3~5(l—-l,05 - )

”El 4 ‘EO.G :

(19)

(20)

On the line where the flow spreads out, when X = 0, Egs. (19) and (20) take the form:

for1l sﬁ_sﬁ.s

for h = 6.5

Nu, = 0.48 ReS ™!,

Nu, = 1.25Re) 52",

21

(22)
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Comparison of the coefficients of heat transfer o computed from (21) and (22) with direct measure-
ments [6] showed that:

1. For values of h < 3 good agreement is observed. The correctness of the comparison is con-
firmed by the good agreement between the two equations U = f(x) (Fig. 1); the first, obtained experimentally
in this paper, and the second, obtained by calculation from (1) from data on the pressure distribution with
respect to x taken from Gardon and Akfirat [5].

We note that when h < 14 a certain scatter in the measured values is observed as a function of the
width by of the gap. The dimension by of the gap affects the initial degree of turbulence &, of the jet. Smaller
values of @ correspond to smaller degrees of initial jet turbulence.

To ensure that the comparison was made for the same initial degree of turbulence, the computed
values of o from (21) were compared with the smaller values obtained experimentally.

2. Whenh = 3, the measured values of & become greater than the computed ones; as h increases,
the difference between the measured and the computed values of the heat-transfer coefficients increases and
reaches a maximum value when h ~ 14,

3. As h > 14 increases further, the difference becomes constant.

In the neighborhood of the line where the flow spreads out, the measured values of the heat-transfer
coefficients aJ are approximately twice the computed values of oy when h > 14. To explain this large dis-
crepancy, we consider the curves in Fig. 2a and b.

There are two curves in Fig. 2a. The first (1) shows the equation ﬁﬁo =f(h) on the line where the flow
spreads out for the value of oy computed from (20)-(21) at increasing distances of the plate from the nozzle.
The second (2) shows the equation £y = £(h) [5], the local axial degree of jet turbulence at increasing distances from
the nozzle, the dotted part of curve 2 being constructed on the basis that when h > 14, Ey» 28 measured
by the authors, remains virtually constant. The two curves were obtained with the same nozzle at Re
= 5500. The value of Nu, was determined from the equation

Nu, (23)

Nuo:m——l‘

The good correlation between curves 1 and 2 in Fig. 2a permits the following conclusions:

1. The increase in the heat-transfer coefficient a(; at the plate for increasing distance from the nozzle
is associated with the degree of turbulence ey of the incident jet.

2. In the first approximation this relation can be taken to be linear.
Figure 2b shows the equation ﬁﬁo = f(e), which was obtained by eross plotting the curves of Fig. 2a.

From the relations shown in Fig. 2a and b, and assuming that a correction to the equations for the
effect of the degree of turbulence in the neighborhood of the line where the flow spreads out is valid through-
out the whole region of the gradient flow, we can obtain improved equations in the form:

forl=h=<6.5

Rel-5 %
Nui, =048 =5 (1-0.11573,7)(1 +0.015¢,), (24)
for 6.5 =h < 12
Nit,, = 1.25—1%—‘%5(1__ 1.05 Tzf—i) (1 4-0.019g,), (25)
for h =12
Nu, = 1.25 éi‘?j (1_ 1.05 %124 )(1 +0.025e,). (26)

The computational results from Egs. (24)-(26) are shown in Fig. 3a and b by continuous lines; the experi-
mental results are shown by dotted lines. Comparison of the computed heat-transfer coefficients with the
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experimental ones permits the following conclusion: in spite of the fact that the correction equations (24)~
(26) were applied for only one Reynolds number Re, = 5500, and one nozzle, with initial degree of tur-
bulence £) ~ 1%, the computed values agree with the experimental ones (the discrepancy does not exceed
15%) over a wide range of Reynolds numbers up to Re; = 22,000 and nozzles with initial degree of turbulence
up to & = 7%.

NOTATION

is the nozzle gap width;
is the distance from nozzle edge to plate;
is the nondimensional form of h;
is the current abscissa;
=x/by is the nondimensional abscissa;
is the nondimensional abscissa at which the velocity at the outer edge of the
boundary layer reaches its maximum value;
is the velocity at the outer edge of the boundary layer;
is the maximum velocity at the outer edge;
is the maximum velocity in nondimensional form;
is the surface temperature of the plate;
is the temperature of the incident flow;
(T — Tyy)/ (Too — Tyy) is the nondimensional temperature;
is the static pressure at a given section of the boundary layer;
is the dynamic boundary layer thickness;
is the thermal boundary layer thickness;
is the heat-transfer coefficient;
Reg = ughy/ v is the Reynolds number referred to parameters at nozzle edge;
Nu = abg/ A is the Nusselt number;
gy =u'/ug is the degree of initial turbulence;
EM is the degree of turbulence on the jet axis referred to the local axial velocity.
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