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The boundary conditions a r e  de te rmined  exper imenta l ly  for  a s y s t e m  of different ial  equa-  
tions descr ib ing  heat  t r an s f e r  in a reg ion  of gradient  flow when a plane turbulent  jet is in-  
cident on a f lat  plate normal  to the flow. The analyt ical  solution is  compared  with d i rec t  
m e a s u r e m e n t s .  

When a plane jet is incident on a f lat  plate no rma l  to the d i rec t ion  of its velocity,  as for  an ax i -  
s y m m e t r i c  jet [1], we can dist inguish th ree  flow regions:  

1. A region of gradient  flow where  the p r e s s u r e  fal ls  along the plate f r o m  a max imum on the line 
where  the flow sp reads  out to near ly  a tmosphe r i c  at a dis tance x f r o m  that line. The veloci ty  at the upper  
boundary of the boundary layer ,  U, i n c r e a s e s  f rom zero  on the line to a m a x i m u m  value U,  at a dis tance 
x ,  f r o m  it. The y - ax i s  is in the plane of s y m m e t r y  of the jet no rmal  to the plate and the x -ax i s  is along 
the plate normal  to the line where  the flow sp reads  out. 

In this region we can a s s u m e  that the flow beyond the l imit  of the boundary l ayer  is potential  and 
that it is descr ibed  by the following equation: 

v .OV = 1 __OP . (1) 
dx p Ox 

2. A region of t rans i t iona l  flow where  the veloci ty  U r ema ins  p rac t ica l ly  constant.  

3. A region of fundamental  flow where  the veloci ty  U begins to d e c r e a s e  due to the b r ak ing  effect  of 
the jet at  the wall,  while the p r e s s u r e  r em a ins  prac t ica l ly  constant.  

In this paper  we give the r e su l t s  of invest igat ing only the region of gradient  flow. F r o m  the prac t ica l  
point of view this region is of g r ea t e s t  in te res t .  At the same  t ime the physical  p r o c e s s e s  a r e  mos t  complex 
he re  and their  invest igat ion is ve ry  t ime-consuming .  

Noting that the Reynolds numbers  for  this region of the flow a re  smal l ,  we can a s s u m e  that the bound- 
a r y  layer  is  l amina r  here ,  pa r t i cu la r ly  because  d P / d x  < 0. 

Under these conditions the s y s t em  of different ia l  equations for  the motion, and of continuity and 
energy,  and the boundary conditions can be wri t ten  as:  

Ou Ou = U dU 
u-ox + ~'--~y 7x + " - -  

Ou q_do  
0-7 =0,  

02/2 
, ( 2 )  Oy ~ 

(3) 
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Fig.  1. The behav io r  of  the 
ve loc i ty  at  the outer  edge of the  
boundary  l aye r :  b 0 = 31 m m ;  u 0 
= 15.5 m / s e c ;  1) h = 1.67; 2) 4; 
b 0 = 22 m m ;  u 0 = 17 m / s e c ;  3) 
= 6.25; 4) 9.1; b 0 = 11 ram;  u 0 
= 20.8 m / s e c ;  5) h = 17.8; 6) 
22.3; 7) f r o m  Eq. (15); 8) f r o m  
the data of [6]. 

07" aT O~T 
U ax + V ay ay 2 ~ a 

The bounda ry  condi t ions  a re :  

fo r  y = 0 ,  u = v = 0 ,  ~" = 0 ;  

f o r y = 6 ,  u = U ;  f o r y = 5  t, T = I .  

The  ve loc i ty  at  the ou te r  edge of the b o u n d a r y  l a y e r  can be wr i t t en  in the f o r m  of two t e r m s  of a 
s e r i e s  which  adequa te ly  r e f l e c t s  the ac tua l  condi t ions  (Fig. 1) 

U 

where/31 and fi2 a r e  cons tan t s ,  depending on h'. 

We in t roduce  the nond imens iona l  coord ina te  V = 

= ~lx + [~x 3 + . . . .  

The equat ion of cont inui ty  is sa t i s f ied  if 

a~ a~ 
- - p  D : - - -  

ay ax 

y | / ~ - ~ .  and define the s t r e a m  funct ion ~ as  fol lows:  
V v 

(4) 

(5 )  

(6) 

V --C- 
= ~ [~,xh(~) + 4~3x3t3(,~) + . . . ] ,  (v) 

w h e r e  fi(~) is a funct ion of the nond imens iona l  coo rd ina t e  77. 

F r o m  (6) and (7) we find the ve loc i ty  d i s t r ibu t ions  for  u and v th rough  the th i ckness  of the boundary  
l a y e r  in the f o r m  

s t 3 

u = [}111 (~1) x -k 4[~f~ ('q) x -k . . . .  (8) 

(9) 

w h e r e  the p r i m e s  indicate  d i f fe ren t i a t ion  with r e s p e c t  to ~?. The nondimens iona l  t e m p e r a t u r e  d i s t r ibu t ion  
th rough  the th i ckness  of the b o u n d a r y  l a y e r  can  be wr i t t en  as  [4] 

T - -  Tw = Fo(rl)-k- ~Z x'F,(TI) -F . . . .  (t0) 
v) = T .  - -  

w h e r e  F0(~), F207) . . . .  a r e  funct ions  of the nond imens iona l  coord ina te  77 and of P r .  

Subst i tut ing (8) and (9) in (2) and (10) in (4), we obtain, a f t e r  s o m e  t r a n s f o r m a t i o n s ,  the fol lowing 
d i f fe ren t ia l  equat ions  [4, 7]: 

t'~ - h i ;  ~ + t;", 
4t; 3t;  t .  - t , tg  = l + t ; ' ,  

�9 �9 �9 . ~ �9 �9 ~ . ~ * ~ , ~ . 
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Fig. 2. The effect  of turbulence on the intensif icat ion 
of heat t r an s f e r  on the line where  the flow sp reads  
out. a: 1) Nu 0 as a function of h; 2) eM as  a percen tage  
of h [6]; b) Nu 0 as a function of eM. 
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1 . 
-~r  F~ -~- ~IFO = 0, (11) 

F ; + f ~ F ~ - -  ' = - -  ' 2 f  f ~ - -  12f3F~, 

with boundary conditions of the fo rm 

fo, n-+0 h = t ; = t , = f ; = 0 ,  Fo=~=O, F,=0, h=l;=0;  
, 1 for ,1-+oo i ,=  I, f~= u  F~ l, F~=0, F,=0, f ~ = ~ .  

We solve Eqs. (11) with the above boundary conditions numer ica l ly  [2, 4]. 

The values  of the unknowns fi, f~, f~, f~  a r e  given in [3], while F~ is given in [4]. The heat  flow at  
the wall  can be de te rmined  f r o m  the F o u r i e r - N e w t o n  law; equating the absolute  values  of the r ight  s ides ,  
we obtain 

( OT 1 = o:(T.. --Tw), (12) 
)~\ Oy ]y=0 

f rom which, noting (10), we have~ 

cr ~/f ~--[F' o (0)+ ~3 F~ (0)x ~ + ]. (13) ~ I  " ' '  " 

! 
For Pr = 0.7, the values of the functions are F~(0) = 0.4959, F2(0) = 0.4476 [4]. Noting these values, 

we can write (13) as: 

) 
Equation (14) can be used in computat ions if we know the constants  fil and f13. They were  de te rmined  

exper imenta l ly .  The expe r imen t s  were  made with pipes of gap length 150 m m  and width 5, 11, 20, 31 ram. 
The polished flat  plate had dimensions 200 • 700 ram; the holes to de te rmine  the s ta t ic  p r e s s u r e  we re  of 
d i ame te r  0.3 ram, and the dis tance between them was 5 ram. The total p r e s s u r e  at  the wall  boundary layer  
was measu red  by a spec ia l ly  made dynamic head me te r .  The exper imen t s  were  made at  flow veloci t ies  a t  
the  nozzle edge f r o m  5-25 m / s e c .  

The exper imenta l  r e su l t s  can be put in the f o r m  of the following un iversa l  equation (Fig. 1): 

~ 1.6 x-~- - -0 .6  . (15) 
U ,  x ,  

~We re ta in  only the f i r s t  two t e r m s  of the s e r i e s .  
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Fig. 3. H e a t - t r a n s f e r  coeff icients  in the region of 
gradient  flow: a) Nu 0 as  a function of h [1-4 (continuous 
curves)  f r o m  Eqs. (24)-(26); 1) Re 0 = 22,000; 2) 11,000; 
3) 5500; 4) 2750]; dotted curves)  f r o m  the exper imenta l  
data of [5]; b) Nu as a function of x (Re 0 = 11,000); I) 
= 2; II) 5; III) 6; IV) 8; V) 16; VI) 32); 1) f r o m  Eqs. (24)- 
(26); 2) f r o m  [5]. 

Here  U,  and x ,  depend on the dis tance between the nozzle edge and the flat  plate. 
f r o m  the measu red  r e su l t s  we cons t ruc ted  the following equations: 

for  I _<h_< 6.5 

U, 1 . 
u--~ = ~ o . , '  ~ , = x ,  = 1 . ~ o . ,  

bo 

for  h_> 6.5 

To de te rmine  them 

(16) 

U, 2.3 - x, (17) U-~- = ~o.s ; x ,  = ~ = 0 .58~~ 
bo 

Compar ing  (5) and (14), we find that in the range  of conditions invest igated 

~x = 1.6 U, ~8 = 0.6 U___~, (18) 
X. ' X~ " 

The computat ional  equations for  de termining  the local values  of the coeff icients  of heat t r a n s f e r  
in the region of gradient  flow a r e  found by substi tut ing (18) in (13) and noting (16) and (17), i .e . ,  

f o r l < _ h _ _ 6 . 5  

Nu= =0,48 Re0~ 1--0.116~..2 ~"C.,, 

for  h __ 6.5 

( Nu t = 1,25Reo ~ I--1,05 ~ ~o.6 �9 

On the line where the flow spreads out, when x = 0, Eqs. (19) and (20) take the form: 

f o r l _ ~ h _ < 6 . 5  

Nuo = 0.48 Re~'5-h -~ 

for  h _> 6.5 

(20) 

(21) 

Nu o = 1.25 Re~'5-h -~ . (22) 
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Compar i son  of the coefficients  of heat t r an s f e r  (~ computed f r o m  (21) and (22) with d i rec t  m e a s u r e -  
ments  [6] showed that: 

1. Fo r  values  of h < 3 good ag reemen t  is observed.  The c o r r e c t n e s s  of the compar i son  is con-  
f i rmed  by the good a g r e e m e n t  between the two equations U = f(x) (Fig. 1); the f i r s t ,  obtained exper imenta l ly  
in this paper ,  and the second, obtained by calculat ion f r o m  (1) f rom data on the p r e s s u r e  dis t r ibut ion with 
r e spec t  to x taken f r o m  Gardon and Akfirat  [5]. 

We note that  when h < 14 a ce r ta in  s ca t t e r  in the measu red  values is observed  as  a function of the 
width b 0 of the gap. The dimension b 0 of the gap affects  the initial  degree  of turbulence e0 of the jet. Smal le r  
values  of a cor respond  to s m a l l e r  degrees  of initial jet turbulence.  

To ensure  that  the compar i son  was made for the same  initial degree  of turbulence,  the computed 
values  of a f rom (21) we re  compared  with the s m a l l e r  values obtained exper imenta l ly .  

2. When h _> 3, the measu red  values  of a become  g rea t e r  than the computed ones; as  h i n c r e a s e s ,  
the d i f ference  between the measu red  and the computed values of the h e a t - t r a n s f e r  coefficients  i n c r e a s e s  and 
reaches  a m a x i m u m  value when h ~ 14. 

3. As h > 14 i n c r e a s e s  fur ther ,  the di f ference becomes  constant.  

In the neighborhood of the line where  the flow sp reads  out, the measu red  values  of the h e a t - t r a n s f e r  
coefficients  ag a r e  approx imate ly  twice the computed values  of a0 when h > 14. To explain this l a rge  d i s -  
crepancy,  we consider  the curves  in Fig. 23 and b. 

There  a r e  two curves  in Fig. 23. The f i r s t  (1) shows the equation Nu--" 0 = f(h) on the line where  the flow 
spreads  out for  the value of a0 computed f r o m  (20)-(21) at increas ing  dis tances  of the plate f r o m  the nozzle.  
'The second (2) shows the equation eM = f (h) [5], the local axial  degree  of jet  turbulence at  increas ing  dis tances  f r o m  
the nozzle,  the dotted par t  of curve  2 being constructed on the bas i s  that when h > 14, eM, as  m e a s u r e d  
by the authors ,  r e m a i n s  v i r tua l ly  constant. The two curves  were  obtained with the s ame  nozzle at Re 
= 5500. The value of Nu 0 was de termined f r o m  the equation 

Ju~ 1. (23) 
Nuo Nuo 

The good co r re l a t ion  between curves  1 and 2 in Fig. 2a pe rmi t s  the following conclusions: 

1. The i nc rea se  in the h e a t - t r a n s f e r  coefficient  a~ at  the plate for  inc reas ing  dis tance f r o m  the nozzle 
is a ssoc ia ted  with the degree  of turbulence ~M of the incident jet. 

2. In the f i r s t  approximat ion  this re la t ion  can be taken to be l inear .  

F igure  2b shows the equation Nu 0 = f(~M), which was obtained by c r o s s  plotting the cu rves  of Fig. 2a. 

F r o m  the re la t ions  shown in Fig. 2a and b, and assuming  that a co r r ec t i on  to the equations for  the 
effect  of the degree  of turbulence in the neighborhood of the line where  the flow sp reads  out is valid through-  
out the whole region of the gradient  flow, we can obtain improved  equations in the form:  

for  l _< h _< 6. 5 

p e  0 . 

Nu~ 0 . 4 8 ~ ( 1  n"-%3 = - -  0.116--~x~ / (I + 0.015e~), (24) 

for  6 . 5 - < h _ < 1 2  

for  h _> 12 

Re~ ( x ~ ) 
Nu~ = 1.25 ~ 1 - -  1.05 (1 + 0.019e~), (25) 

Re~ (1 Nu x = 1.25 ~ [ - -  1,05 (1 + 0.025e~). (26) 

The computat ional  r e su l t s  f r o m  Eqs. (24)-(26) a r e  shown in Fig. 3a and b by continuous l ines;  the expe r i -  
menta l  r e su l t s  a r e  shown by dotted lines. Compar i son  of the computed h e a t - t r a n s f e r  coeff icients  with the 
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exper imen ta l  ones pe rmi t s  the following conclusion: in spite of the fact  that the co r r ec t i on  equations (24)- 
(26) we re  applied for  only one Reynolds number  Re 0 = 5500, and one nozzle,  with initial  degree  of t u r -  
bulence e0 ~ 1%, the computed values  ag ree  with the exper imenta l  ones (the d i sc repancy  does not exceed 
15%) over  a wide range  of Reynolds numbers  up to Re 0 = 22,000 and nozzles  with ini t ial  degree  of turbulence 
up to ~0 = 7~c. 

b 0 
h 

= h / b  0 
X 

x = x / b  0 

x ,  = x , / b 0  

U 
U,  

T~o 
T = (T - Tw)/(Too - T w) 
P 
6 

5 T 
Ol 

Re o = uobo/v 
Nu = ~b0/7, 

~o = u ' / u 0  

eM 

N O T A T I O N  

is the nozzle gap width; 
is the dis tance f r o m  nozzle edge to plate; 
is the nondimensional  f o r m  of h; 
is the cu r ren t  absc i s sa ;  
is the nondimensional  absc i s sa ;  
is the nondimensional  a b s c i s s a  a t  which the veloci ty  a t  the outer  edge of the 
boundary layer  r eaches  i ts  max imum value; 
is the veloci ty  a t  the outer edge of the boundary layer ;  
is 
is 

is 

is 

is 

IS 

Is 

is 

is 

Is 

IS 

is 

IS 

the m a x i m u m  veloci ty  a t  the outer edge; 
the m a x i m u m  veloci ty  in nondimensional form;  
the su r face  t e m p e r a t u r e  of the plate; 
the t e m p e r a t u r e  of the incident flow; 
the nondimensional  t empe ra tu r e ;  
the s ta t ic  p r e s s u r e  at a given sect ion of the boundary layer ;  
the dynamic boundary l ayer  thickness;  
the t he rm a l  boundary l ayer  th ickness;  
the h e a t - t r a n s f e r  coefficient;  
the Reynolds number  r e f e r r e d  to p a r a m e t e r s  at nozzle  edge; 
the Nusset t  number ;  
the degree  of initial  turbulence;  
the degree  of turbulence on the jet axis r e f e r r e d  to the local axial  velocity.  
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